In-vitro screening of Ficus racemosa for
Anticancer activity
Prakash
S. Sukhramani 1*, G. Vidyasagar2,
Piyush M. Patel3
1Ph.D. Research Scholar, JJT University, Vidyanagari, Jhunjhunu – Churu Road, Dist: Jhunjhunu,
Rajasthan – 333001, India
2Veerayatan Institute of Pharmacy, Bhuj-Mandvi Road, Jakhania, Mandvi – 370460, Dist: Kutch, Gujarat, India
3Shree B.M Shah College of Pharmaceutical Education and
Research, Modasa - 383315, Dist: Sabarkantha,
Gujarat, India
ABSTRACT:
Ficus racemosa
is a moderate sized avenue tree found throughout India. It is popular in indigenous
system of medicine like Ayurveda, Siddha,
Unani and Homoeopathy. Aim of the present study was
undertaken with an objective to find out the anticancer activity of Ficus racemosa
plant extracts using standard in-vitro
MTT bioassay against various cancer cell lines (HL-60, HepG2, NCI-H23 and
HEK-293T). With use of MTT dye, % cell viability and % inhibition of the hit
compounds was evaluated within respective wavelengths prior with standard
compounds. Data obtained from MTT bioassay screening revealed that methanolic extract of Ficus racemosa shown cytotoxic
activity against HL-60 and HepG2 cell line with profound IC50 values
and shown negligible toxicity against normal cell line (HEK-293T).
KEYWORDS: Ficus racemosa Linn., MTT bioassay, anticancer activity
INTRODUCTION
With the emerging worldwide interest in adopting and
studying traditional systems and exploiting their potential based on different
health care systems, the evaluation of the rich heritage of traditional
medicine is essential. In this regard, one such plant is Ficus racemosa Linn. syn. Ficus glomerata Roxb.
(Family - Moraceae). It is commonly known as Gular fig, Cluster fig in English, Gular
in Hindi and as Udumbara in Sanskrit. Ficus racemosa L.
is a large deciduous tree distributed throughout India particularly in
evergreen forests and moist localities.1 Root, bark, leaves and
fruits of the tree are used for medicinal purposes.2 In developing
countries and particularly in India low income people such as farmers, people
of small isolated villages and native communities use folk medicine for the
treatment of common infections.3 These plants are ingested as
decoctions, teas and juice preparations to treat respiratory infection. They
are also made into a poultice and applied directly on the infected wounds or burns.
Aqueous extract of the drug possesses antiulcer activity against acute gastric
ulcers in animals. It was also found to inhibit acid secretion and to stimulate
excretion of gastric juice. It is still used in folk medicine as astringent, antidiabetic, refrigerant, antiasthmatic,
antidiarroheoal and efficacious in threatened
abortions. Glycosides of the ethanolic extracts of
the leaves were found to exert hypotensive and vasodialator in animal studies. Extract of leaves when used
locally is found efficacious in inflammation, lymphadenitis, in sprains and fibrositis. 4-11
Some of the complications occur during in-vivo cytotoxic screening that is intravenous administration of
chemotherapeutic drugs cause significant individual differences in
biotransformation and biodistribution. To overcome
this problem, in-vitro cytotoxic screenings are used in which the effect of
chemotherapeutic drug is being studied on the tumor cells in culture outside
the body. There are two basic types of in-vitro
cancer screening method - (a) chemo-sensitivity and (b) chemo-resistance. 12
Common basic steps of in-vitro cytotoxic
screening include: (a) isolation of cells, (b) incubation of cells with drugs,
(c) assessment of cell survival and (d) interpretation of the result. The trypan blue dye exclusion assay is the most commonly
accepted method for the measurement of cell viability. It relies on the
alteration in membrane integrity as determined by the uptake of dye by dead
cells, thereby giving a direct measure of cell viability. It is now
well-documented that apoptosis or programmed cell death is the key mechanism by
which Chemotherapeutic agents exert their cytotoxicity.
Colorimetric assay (MTT) is mainly useful in determination of cellular
proliferation, viability and activation. The need for sensitive, quantitative,
reliable and automated methods led to the development of standard assays. Cell
proliferation and viability assays are of particular importance for routine
applications. Tetrazolium salts MTT are especially
useful for assaying the quantification of viable cells. MTT works by being converted
to a formazan dye only by metabolic active cells. Formazan dyes were solubilized
and are directly quantified using an ELISA reader with their respective
reference wavelengths. 13
MATERIALS AND METHODS:
Plant material:
The authenticated sample was collected from Herbal
Botanical garden, Bangalore, India and was further confirmed by the taxonomist.
Preparation of plant extracts 14
Extraction with Alcohol:
Authenticated stem bark of Ficus racemosa was shade dried at room
temperature, pulverized, and 100g of the powder was extracted exhaustively with
95% ethanol at temperature 600C, in a Soxhlet extractor. The extract was
concentrated in a rotary flash evaporator; residue was dried in a dessicator over sodium sulfite.
Successive Extraction:
Another 100g of the powder was extracted exhaustively and
successively with various solvents in an increasing order of polarity viz.,
Petroleum ether (40-60○C), Ethyl acetate, Alcohol and Water.
Each extract was concentrated to a small volume and allowed to dry.
Media:
Leibovitz L-15 Medium with L-Glutamine (Biological Industries),
FBS (Fetal Bovine Serum, South American origin) (Quaditive),
SFM HEK-293 (Serum Free Media, Hyclone), Thioglycollate medium (TGM) (Himedia),
Tryptone soya broth (TSB) (Himedia)
and Cell proliferation kit (MTT) 1000 tests (Biotium,
Inc.).
Cell lines:
HEK-293T (Human embryonic kidney normal cell line),
NCI-H23 (Human Non-Small Cell Lung cancer cell line), HepG2 (Human Hepatocellular carcinoma cell line) and HL-60 (Human promyelocytic leukemia cell line) were purchased from NCCS,
Pune.
Microbial and fungal culture:
Candida albicans, Bacillus subtilis, Candida sporogenes were procured
from Microbial Type
Culture Collection (MTCC), Institute of Microbial Technology, Chandigarh.
Subculture of adherent cell lines (HEK 293T, NCI-H23) 13
Cultures were observed using an inverted microscope to
assess the degree of confluency and the absence of
bacterial and fungal contaminants was confirmed. Cell monolayer was washed with
PBS without Ca2+/Mg2+ using a volume equivalent to half the volume of culture
medium. Trypsin/EDTA was added on to the washed cell
monolayer using 1 ml per 25 cm2 of surface area. Flask was rotated
to cover monolayer with trypsin. Flask was returned
to the incubator and left for 2-10 mins. The cells
were examined using an inverted microscope to ensure that all the cells were
detached and floated. The cells were resuspended in a
small volume of fresh serum containing HEK-293 medium. 100-200 μl was removed to perform a cell count. The required
number of cells were transferred to a new labeled flask containing pre-warmed
HEK-293 medium and incubated as appropriate for the cell line.
Determination of bacteria and fungi in normal and
carcinoma cell lines 13
Cell line was cultured in the absence of antibiotics at
NCCS, Pune. Cell suspension was prepared by scrapping
attached cells with the use of a cell scraper and maintained the pH 7.5-8.0. In
1.5 mL cell suspension, 2 mL
thioglycollate medium (TGM) and 2 mL
tryptone soya broth (TSB) were added and inoculated
with two different strains; Candida albicans (0.1
mL) Bacillus subtilis (0.1
mL). Then in 1.5 mL cell
suspension, 1 mL TGM was added and inoculated with
0.1 mL Candida sporogenes
and 2 mL (TGM), 2 mL
(TSB) were left uninoculated as negative controls.
Broths were incubated at 32 ºC. Test and Control broths were examined for
turbidity after 14 days.
Anti-cancer Activity:
MTT Assay: 13
The cells were preincubated
at a concentration of 1 × 106 cells/ml in culture medium for 3 hrs
at 37 °C and 6.5 % CO2. Then, the cells were seeded at a
concentration of 5 × 104 cells/well in 100 μl
culture medium and at various concentrations (0.005-100 μM/ml)
of standard doxorubicin and synthesized compounds (dissolved in 2 % DMSO (dimethylsulphoxide) solution) into microplates
(tissue culture grade, 96 wells, flat bottom) and incubated for 24 hrs at 37 °C
and 6.5 % CO2. The cell proliferation is based on the ability of the
mitochondrial succinate-terazolium reductase system to convert 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to a blue colored formazan. The test denotes the survival cells after toxic
exposure. Then, 10 μl MTT labelling
mixture was added and incubated for 4 hrs at 37 °C and 6.5 % CO2.
Each experiment was done in triplicates. Then 100 μl
of solubilization solution was added into each well
and incubated for overnight. The spectrophotometric
absorbance of the samples was measured using a microplate
(ELISA) reader. The wavelength to measure absorbance of the formazan
product in between 550 and 600 nm according to the filters available for the
ELISA reader was used. The reference wavelength should be more than 650 nm.
IC50, the concentration of compound required
to inhibit 50 % cell growth, was determined by plotting a graph of Log
(concentration of compound) vs % cell inhibition. A line drawn from 50 % value
on the Y axis meets the curve and interpolate to the X axis. The
X axis value gives the Log (concentration of compound). The antilog of that
value gives the IC50 value. Percentage inhibition of novel compounds
against all cell lines was calculated using the following formula:
(At − Ab)
% Cell survival = ------------ × 100
(Ac − Ab)
Where, At = Absorbance of
Test,
Ab= Absorbance of
Blank (Media),
Ac= Absorbance of control
(cells)
% cell inhibition = 100 − % cell survival
RESULT AND DISCUSSION:
Total bacterial and fungal count:
The examination
of the test and control broths after 14 days incubation confirmed the absence
of turbidity. Absence of turbidity in the test broth means that there was no
evidence of bacterial, fungal and cross contamination.
Cytotoxicity
Assay:
The effect of
plant extract aliquots (test) and doxorubicin (standard) on the growth of
HL-60, HepG2, HEK-293T and NCI-H23 cell lines were examined by the MTT assay.
Dose response curves constructed between the range 0.005 – 100 μg/ml and 0.005 – 100 μM
for compound aliquots and doxorubicin (control) respectively, express
decreasing number of viable cells with increasing concentration of compounds
aliquots as well as doxorubicin. Calculation of IC50 value was done
using GraphPad Prism Software (Ver. 5.01) (Figure
1 and 2). The susceptibility of cells to the compound aliquots and doxorubicin
was characterized by IC50 and R2 values (Table 1).
Results indicate that the cytotoxic effect steadily
strengthens with increase in the concentration.
Table No. 1: IC50 and R2
values of Methanolic
extract of Ficus racemosa
Conc’n (µg/ml) |
HL-60 |
HepG2 |
NCI-H23 |
HEK293 |
IC50 |
276.85 |
362.95 |
>1000 |
775.65 |
R² |
0.9707 |
0.9843 |
0.9624 |
0.9834 |
Fig. 1: % Inhibition v/s log conc (ng/ml) of Methanolic extract of Ficus racemosa on HL-60
Fig. 2: %
Inhibition v/s log conc (ng/ml)
of Methanolic extract of Ficus racemosa on HepG2
Form the Table
No. 1, we can see that highest activity
of methanolic extract have found against HepG2 and
HL-60 having IC50: 362.95 and 276.85 respectively. But none of
extract showed activity against HEK-293T and NCI-H23 (near to 1000 µM; can be
neglected).
Figure: 1 and 2 for methanolic
extract show the dose-effect co-relation with maximum linearity in case of
HepG2 and HL-60 of the six cell lines at R2 value being 0.9843 and
0.9707 respectively. The % inhibition is increasing with increase in the
concentration. The graphical correlation for NCI-H23 is non-linear. The trendline for other cell lines is not significant with
aberrations.
After
evaluation, out of the four cell lines, HepG2 and HL-60 cell line showed best
results in terms of IC50 and regression. And No activity was found
in the rest of the extracts screened for MTT Assay.
CONCLUSION:
The
methanolic extracts of the plant part(s) used showed
prominent anticancer activity having comparable cytotoxic
IC50 values with Doxorubicin against NCI-H23, HL-60 and HepG2 tumor
cell lines. Further evaluation of cytotoxic activity
of these compounds by in-vivo study
should also be done for its cytotoxicity confirmation
as well as ADME profiling. The results described indicate that these compounds
could serve as the basis for
the development of a new group of cancer chemotherapeutics and certainly holds
great promise towards good active leads.
ACKNOWLEDGEMENT:
I owe a special
word of thanks to Dr. Anil Middha, Head Coordinator
of Pharmacy department, JJT Universtity, Jhunjhunu and Dr. Piyush M.
Patel, Professor and HOD, Shree B.M Shah College of Pharmaceutical Education and
Research for their kind nature, generous attitude, precious discussions, and
timely suggestions. I wish to thank Dr. G. Vidyasagar
(Principal and Professor, Veerayatan Institute of Pharmacy) for providing necessary facilities and cooperation for
this present research work.
REFERENCES:
1.
The Ayurvedic
Pharmacopoeia of India, Government of India, Ministry of Health and Family
Welfare, Department of Indian System of Medicine and Homeopathy, New Delhi, 1990, 1st edition, Part I,
Vol. I, pp. 117-118.
2.
Nadkarni AK, Indian
Materia Medica, 2000, 3rd edition, pp.
548-550.
3.
Fabricant DS, Farnsworth NR. Environmental
Health Perspectives Supplements, 2001,
109, pp. 69-75.
4.
Jakurian. Plant that heal, Pune, 1sted.: printed and Published by PH Lall at and for the Owners Oriental Watchman, Published House,
Maharashtra, 1995.
5.
Khare CP. Encyclopedia of Indian
medicinal plant, Springer Verlag Berlin Heidelberg
printed in Germany, 2004.
6.
Anonymous. Indian
Herbal Pharmacopoeia, Revised New ed.: Indian Drug Manufacturers Association,
Mumbai, 2002.
7.
Sirisha N, Sreenivasulu
M, Sangeeta K, Madhusudhana
Chetty C. Antioxidant Properties of Ficus Species–A
Review. International Journal of PharmTech
Research, 2010, 2(4), 2174-2182.
8.
Joseph B, Justin
RS. Phytopharmacological properties of Ficcus Racemosa Linn
- An overview. International Journal of Pharmaceutical Sciences Review and
Research, 2010, 3(2), 134-138.
9.
Paarakh PM. Ficus racemosa Linn.–An overview. Natural
Product Radiance, 2009, 8(1), 84-90.
10.
Arunachalam A, Venkatesan N, Senthilraj R, Vijayakumar G, Karthikeyan M and Ashutoshkumar. Phytopharmacognostical
properties of Ficus
racemosa
Linn. International Journal of Comprehensive Pharmacy, 2010, 1(5).
11.
Boera HJ, Koola
A, Brobergb A, Mzirayc WR, Hedberga I, Levenforsd JL.
Anti-fungal and anti-bacterial activity of some herbal remedies from Tanzania. Journal
of Ethnopharmacology, 2005, 96, 461–469.
12.
Freshney IR.
Culture of animal cells: a manual of basic technique, Wiley-Liss,
New York (USA), 2005, pp. 5,
200-201, 209-211, 213-214, 251, 328-332, 335-338, 359-370, 508.
13.
Sukhramani PS, Sukhramani PS, Desai SA, Suthar
MP. In-vitro cytotoxicity
evaluation of novel N-substituted bis-benzimidazole
derivatives for anti-lung and anti-breast cancer activity. Annals of Biological Research, 2011, 2 (1): 51-59.
14.
Kokate CK, Purohit AP, Gokhale SB.
Pharmacognosy, Nirali Prakashan,
Pune, 36th Edition, 2006, pp. 593-597.
Received on 04.03.2013
Modified on 23.03.2013
Accepted on 03.04.2013
© A&V Publication all right reserved
Research Journal of Pharmacognosy and
Phytochemistry. 5(3): May-June 2013, 287-119-122